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CEDEX, France
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Abstract. We generalize Bray’s self-consistent screening approximation to describe the critical
dynamics of theφ4 theory. In order to obtain the dynamical exponentz, we have to make an
ansatz for the form of the scaling functions, which fortunately can be restricted by general
arguments. Numerical values ofz for d = 3, andn = 1, . . . ,10 are obtained using two different
ansatz, and differ by a very small amount. In particular, the value ofz ' 2.115 obtained for the
three-dimensional Ising model agrees well with recent Monte Carlo simulations.

1. Introduction

Phase-ordering kinetics, critical- and low-temperature dynamics of pure and random systems
are the subject of active research [1]. Of particular interest are the approximate methods
to deal with nonlinear dynamical equations, which often amount to a self-consistent
resummation of perturbation theory [4]. A much-debated case is the ‘mode-coupling’
approximation, used to describe liquids approaching their frozen (glass) phase. Interestingly,
this mode-coupling approximation for systems without disorder can alternatively be seen as
the exact equations for an associateddisorderedmodel of the spin-glass type [2–4]. The
simplest mode-coupling approximation for theϕ4 theory, however, is not very good. For
example, it predicts for the static critical exponentη the value 2− d

2 independently of the
numbern of components of the fieldϕ. Furthermore, the underlying disordered model is
not stable [4].

A better-behaved resummation scheme is the ‘self-consistent screening approximation’
(SCSA) introduced by Bray in the context of the staticϕ4 theory [5, 6], and used in other
contexts [7, 8]. It amounts to self-consistently resumming all the diagrams appearing in the
largen expansion, including those of order1

n
. Again, this approximation becomes exact for

a particular mean-field-like spin-glass model [4], which turns out to be well defined for all
temperatures and thus ensures that the approximation is well behaved.

The aim of the present paper is to generalize the SCSA equations to describe the
dynamics of theϕ4 theory at the critical point, and to predict a value for the dynamical
exponentz.

In section 2 we shall introduce the dynamical SCSA and the dynamical equations in
their general form. From section 3 and throughout the rest of the paper we assume that
time-translation invariance (TTI) and the fluctuation-dissipation theorem hold at least down
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to the critical point. Bray’s equations will be recovered as the static limit of our dynamical
equations. The reliability of the SCSA is discussed quantitatively in the zero-dimensional
static case.

In section 4 we study the equations right at the critical temperature where dynamical
scaling is supposed to hold. The full solution of these coupled equations, involvingscaling
functions, gives in principle the dynamical exponentz within the SCSA approximation.
Unfortunately, as is often the case [9], these equations are very hard to solve, either
analytically or even numerically. In sections 5 and 6 we thus propose two different ansatz
for the scaling functions, which are much constrained by general requirements, however.
The second ansatz leads to the exact O(ε2) result in theε = 4−d RG expansion of Halperin
et al [10]. The numerical value of the exponentz only very weakly depends on the chosen
ansatz, and turns out to be quite close to the best available Monte Carlo estimate for the
Ising model ind = 312.

2. The self-consistent screening approximation

Let us consider the coarse-grained Hamiltonian density

H[ϕ(x)] = 1

2
(∇ϕ(x))2+ µ

2
ϕ2(x)− g

8
ϕ4(x) (2.1)

whereϕ(x) is ann component field andx is thed-dimensional space variable. Withϕ2(x)
andϕ4(x) we indicate respectively|ϕ(x)|2 and (|ϕ(x)|2)2. The coupling constant,g, is
negative and of ordern−1; µ is a (temperature dependent) mass term which vanishes at the
mean-field transition point.

The partition function is

Z =
∫
Dϕe−

∫
dd x H[ϕ(x)]

T . (2.2)

In order to introduce the SCSA one starts from a largen expansion formalism. We
rewriteZ with a Gaussian transformation introducing an auxiliary fieldσ

Z =
∫
DσDϕe−

∫
dd x H[ϕ(x),σ (x)]

T (2.3)

H [ϕ(x), σ (x)] being now the Hamiltonian density of two coupled fieldsϕ(x) andσ(x).

H [σ,ϕ] = 1

2
(∇ϕ(x))2+ µ

2
ϕ2(x)+ 1

2
σ 2(x)−

√
g

2
σ(x)ϕ2(x). (2.4)

The SCSA amounts to consider the renormalization of the order 1/n diagrams in the
Dyson expansion for the correlation functions of the two fieldsϕ(x) and σ(x). Using
this resummation scheme Bray [5] obtained interesting results for the static exponentη

which describes the small momentum behaviour of the correlation functions. Figure 1
shows the static SCSA equations for〈ϕ(x)ϕ(x′)〉 (full line) and 〈σ(x)σ (x′)〉 (wavy line).
The bare quantities are indicated respectively by a thinner plain line and a dashed line.

Our goal is to develop a dynamical generalization of this expansion for non-conserved
Langevin dynamics, starting from the SCSA Hamiltonian. We thus obtain the following
equations of motion forϕ(x, t) andσ(x, t):

ϕ̇(x, t) = −(∇2+ µ)ϕ(x, t)+√gϕ(x, t)σ (x, t)+ ηϕ(x, t) (2.5)

σ̇ (x, t) = −σ(x, t)+
√
g

2
ϕ2(x, t)+ ησ (x, t) (2.6)

with two independent thermal noisesηϕ, ησ .
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Figure 1. Diagrammatic equations for the correlation functions〈ϕ(x)ϕ(x′)〉 (full line) and
〈σ(x)σ (x′)〉 (wavy line).

Figure 2. Diagrammatic representation of the dynamical SCSA equations, where the full circle
stands for the renormalization ofDϕ while the full square stands for the renormalization ofDσ .
The empty circle and empty square stand for the non-renormalized noises.

Let us now consider the two-point functions

Gϕ(x,x
′, t, t ′) =

〈
∂ϕ(x, t)

∂η(x, t ′)

〉
(2.7)

Cϕ(x,x
′, t, t ′) = 〈ϕ(x, t)ϕ(x′, t ′)〉 (2.8)

and the corresponding functions for the fieldσ . The SCSA dynamical equations, which can
be seen as a mode-coupling approximation on the set of equations (2.5)–(2.6) (see figure 1)
then read:

6ϕ(t1, t2) = ng
2
δ(t1, t2)

∫ t1

0
dt3Cϕ(t3, t3)G

0
σ (t1, t3)

+g[Gϕ(t1, t2)Cσ (t1, t2)+Gσ(t1, t2)Cϕ(t1, t2)] (2.9)

6σ(t1, t2) = ngGϕ(t1, t2)Cϕ(t1, t2) (2.10)

Dϕ(t1, t2) = 2T δ(t1− t2)+ gCϕ(t1, t2)Cσ (t1, t2) (2.11)

Dσ(t1, t2) = 2T δ(t1, t2)+ ng
2
C2
ϕ(t1, t2) (2.12)

where we have dropped the space coordinates,x, for clarity, and introduced the self-energies,
6, defined as:

G(t, t ′) = G0(t, t ′)+
∫ t

0
dt1

∫ t1

t ′
dt2G

0(t, t1)6(t1, t2)G(t2, t
′) (2.13)

(the superior 0 refers to the bare quantity), and the ‘renormalized noises’D, defined as:

C(t, t ′) =
∫ t

0
dt1

∫ t ′

0
dt2G(t, t1)D(t1, t2)G(t

′, t2). (2.14)

We shall limit ourselves to consider the above equations in a regime of stationary
dynamics. That is to say that we will make use of the assumption of time-translational
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invariance (only difference of times matter), which allows one to show that the fluctuation
dissipation theorem (FDT) is valid, i.e.

θ(t − t ′)∂C(t − t
′)

∂t ′
= TG(t − t ′). (2.15)

Extensions of these methods to the non-stationary low-temperature regime, where this
theorem is violated [11], will be the subject of further work. In the following, we shall set
the energy scales by choosingT = 1, and vary the mass termµ to reach the critical point.

3. Static limit

With these assumptions equations (2.12) reduces to only two coupled independent equations
which have the simplest form in Fourier space

6ϕ(k, ω) = g
∫

[Cσ (k − k′, ω − ω′)Gϕ(k′, ω′)+ Cϕ(k − k′, ω − ω′)Gσ (k
′, ω′)]Dk′Dω′

+ng
2
G0
σ (k = 0, ω = 0)

∫
Cϕ(k

′, ω′)Dk′Dω′ (3.1)

6σ(k, ω) = ng
∫
Cϕ(k − k′, ω − ω′)Gϕ(k′, ω′)Dk′Dω′ (3.2)

where Dk′ ≡ dd k′
(2π)d and Dω′ ≡ dω′

2π .
Using the fact thatC(k, t = 0) ≡ C(k) is equal toG(k, ω = 0) (from FDT and the

Kramers–Kronig (KK) relations), and using again the KK relations, it is easy to check that
for ω = 0 one recovers exactly the static SCSA equations [5], namely

Cϕ(k) = 1

µ+ k2− g ∫ Dk′Cϕ(k − k′)Cσ (k′)− gn

2

∫
Dk′Cϕ(k′)

Cσ (k) = 1

1− g

2n
∫

Dk′Cϕ(k − k′)Cϕ(k′) .
(3.3)

In order to test the validity of this approximation, it is interesting to consider the case
of zero spatial dimensions [6]. Let us setn = 1 which is a bad case for the SCSA which
should become more accurate the largern is. We will compare equations (3.3) with the
exact static-correlation function which, in zero dimension, can be calculated analytically
and is

Cexact= − 1

µ
+ µ
g
−
µK− 3

4

(
µ2

4g

)
2gK 1

4

(
−µ2

4g

) − µK 5
4

(
µ2

4g

)
2gK 1

4

(
−µ2

4g

) (3.4)

whereKn(a) is the modified Bessel function of the second kind. Equations (3.3) give for
Cϕ:

CSCSA= 1(
µ− ng2CSCSA− g CSCSA

(1− g

2nC
2
SCSA)

) . (3.5)

From plotting the relative difference of the two correlation functions versus the coupling
(see figure 3) we can see that SCSA is quite close to the exact theory. In particular, the
asymptotic behaviour in the|g| → ∞ limit of the two functions is

lim
|g|→∞

√
|g|CSCSA= 2(

√
2− 1) and lim

|g|→∞

√
|g|Cexact=

2
√

20( 3
4)

0( 1
4)

. (3.6)
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Figure 3. Relative difference between the exact result and the Hartree(CH) and the SCSA
(CSCSA) approximations, in the casen = 1, d = 0.

For all g, the relative difference is actually bounded by:

|Cexact− CSCSA|
Cexact

< 1−
√
−1+√20( 1

4)

20( 3
4)

= 0.0479. . . (3.7)

We can also compare the smallg expansions of the two theories which give

Cexact= 1

µ

(
1+ 3

2µ2
g + 21

4µ4
g2

)
(3.8)

CSCSA= 1

µ

(
1+ 3

2µ2
g + 5

µ4
g2

)
(3.9)

showing explicitly how the two theories differ already at orderg2. The self-consistent nature
of the approximation, however, keeps the SCSA in good agreement with the exact theory
even for large values of the coupling constant as remarked before.

It is instructive, in passing, to compare the SCSA with the simple Hartree(n = ∞)
resummation scheme, which is also the Gaussian variational result. One definesFH =
min{F } where

F = F0+ 〈H −H0〉 (3.10)

with

F0 = − ln
∫
Dϕe−

µ̃ϕ2

2 = − ln

(
2π

µ̃

)
(3.11)

〈H0〉 = 1
2 (3.12)

〈H 〉 =
∫
Dϕe−

µ̃ϕ2

2

(µ
2
ϕ2− g

8
ϕ4
)
=
(
µ

2µ̃
− 3g

8µ̃2

)
. (3.13)

Minimizing F with respect toµ̃ we find

µH = µ+
√
µ2− 6g

2
(3.14)

and consequently

CH 〈ϕ2〉µH =
2

µ+
√
µ2− 6g

. (3.15)

As can be seen from figure 3, the SCSA turns out to be marginally better than the Hartree
variational approach (at least in this particular case ofn = 1 andd = 0).
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4. Critical dynamics

We shall now work right at the critical point,µc, such that the renormalized mass vanishes
(therefore eliminating the ‘tadpole’ contribution in equation 2.9). We shall search for
solutions under the general dynamic scaling form (valid in the smallk and smallω limit):

Gϕ(k, ω) = 1

k1
nϕ

( ω
kz

)
Gσ(k, ω) = 1

k1
′ nσ

( ω
kz

)
Cϕ(k, ω) = 2

ωk1
Im
[
nϕ

( ω
kz

)]
Cσ (k, ω) = 2

ωk1
′ Im

[
nσ

( ω
kz

)] (4.1)

where we have defined1 = 2−η, and used FDT. First settingω = 0, one finds by matching
the momentum dependence of the left- and right-hand sides of (3.1)–(3.2) that:

1′ = d − 21 = d − 4+ 2η. (4.2)

Note that in the mean field,z = 2,1 = 2, η = 0 and1′ = 0. Identification of the prefactors
yields:

nσ (0)n
2
ϕ(0) = −

2

f (η, d)ng
(4.3)

where

f (η, d) = 1

(4π)d/2
0
[
1− d

2

]
0
[
d−1

2

]2

0[d −1]0
[
1
2

]2 (4.4)

and an extra equation fixingη as a function ofd andn, which we do not write explicitly
[5].

Now let us consider the other case wherek = 0 andω > 0 (but small). Taking the
imaginary part of (3.1)–(3.2), one obtains:

Im[6ϕ(0, ω)] = Sω

nnϕ(0)

∫
q1−1 dq ds

Im
[
fϕ

(
(ω−s)
qz

)]
Im
[
fσ

(
s
qz

)]
s(ω − s) (4.5)

Im[6σ(0, ω)] = S

nσ (0)

∫
q1

′−1 dq ds
Im
[
fϕ

(
(ω−s)
qz

)]
Im
[
fϕ

(
(s)

qz

)]
s

(4.6)

wherefϕ,σ (x) = nϕ,σ (x)/nϕ,σ (0). We also defined

S = 2ng�d
(2π)(d+1)

n2
ϕ(0)nσ (0) ≡ −

4�d
f (η, d)(2π)(d+1)

. (4.7)

In general the scaling functions can be written

Im[fϕ(x)]
.= Af̃ϕ(ax)

Im[fσ (x)]
.= A′f̃σ (a′x)

(4.8)

with, by convention, limu→∞ u1/zf̃ϕ(u) = 1 and limu→∞ u1
′/zf̃σ (u) = 1. This asymptotic

behaviour is required for thek→ 0 limit to be well defined, if (4.1) is correct. Furthermore,
the smallω behaviour of the imaginary part of the response function is expected to be regular
for k finite, and hencef̃ (u) ∝ u for u→ 0. A,A′ are coefficients setting the scale of the
imaginary part of the response function whilea, a′ are coefficients setting the frequency
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scales. Using the fact that the imaginary and real part of the response function are power-
laws at large frequencies, which imply that their ratio is tan

(
π1
2z

)
(resp. tan

(
π1′
2z

)
) one finds

that:

a1/z

A
sin2

(
π1

2z

)
= S

nz

∫ ∞
0

dx

x1+1/z

∫ ∞
−∞

du

u(1− u) Im[fϕ(x(1− u))] Im[fσ (xu)]

α′1
′/z

A′
sin2

(
π1′

2z

)
= S

z

∫ ∞
0

dx

x1+1′/z

∫ ∞
−∞

du

u
Im[fϕ(x(1− u))] Im[fϕ(xu)].

(4.9)

It is easy to show that these equations actually only depend on the value of theratio
of frequency scalesy = a′

a
. The coefficientA can be fixed using the KK relation, since

the involved integral converges, which means that the smallk behaviour of the real part
of the correlation function is fully determined by the imaginary part in the scaling region
ω, k→ 0. Hence

1= A

π

∫ ∞
−∞

dx
f̃ϕ(x)

x
. (4.10)

The corresponding integral for̃fσ does not converge for largex, meaning that the non-
scaling region is needed to saturate the sum rule. Hence, we must use another relation to
fix A′, which we choose to be the smallω expansion of equation (4.6).

Thus, if the functionsf̃ϕ, f̃σ were known, we would have four equations to fix four
constants:A,A′, y, and, of course, the dynamical exponentz, in terms ofd andn. f̃ϕ, f̃σ
are in principle also fixed by the full equations for arbitraryω

kz
. However, as in other

similar cases [9], these equations are very hard to solve, either analytically or numerically.
We will thus propose the ansatz for these functions, which have to satisfy the above general
requirements. Note that onceA,A′, a, a′ have been pulled out, the only freedom is in the
shapeof these functions. We shall thus work with two such ansatz, which will turn out to
give very similar answers forz. This was also the case in the context of the KPZ equation
[9].

5. Ansatz 1

The simplest ansatz one can think of, which generalizes the mean-field shape:

f̃ϕ(x) = x

(1+ x2)
(5.1)

reads:

f̃ϕ(x) = x

(1+ x2)α
(5.2)

f̃σ (x) = x

(1+ x2)α
′ (5.3)

where we have set

α
.= 1+ z

2z
(5.4)

α′ .= 1′ + z
2z

. (5.5)

(Note thatα = 1 in mean field.) These functions indeed have the correct asymptotic
behaviours; they go linearly to zero for small values of the argument and behave as power-

laws (f̃ϕ(x) ' x−1
z and f̃σ (x) ' x−1′

z ) in the largex limit.
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We can now use (4.10) to determineA

A = √π 0[α]

0[α − 1
2]
. (5.6)

The smallω expansion of Im6σ(k, ω) can be matched with that of the right-hand side
of equation (4.6) leading to the following equation

y = − 2A2

A′f (η, d)(2π)d+1

∫ ∞
−∞

ddq
1

|q|1|1− q|1+z
∫ ∞
−∞

dt
1

(1+ t2)α
(

1+
(
|q|zt
|1−q|z

)2
)α .

(5.7)

After some algebraic manipulations we obtain for the last three equations:

sin2

(
π1

2z

)
= −A

2A′yS
2nz

B

[
1− 1

2z
,
d

2z

]
×
∫ ∞
−∞

du

|u|2−1
z

F

[
α′, 1− 1

2z
, α + α′, 1− y2 (1− u)2

u2

]
(5.8)

sin2

(
π1′

2z

)
= −A

2A′S
2z

y−
1′
z B

[
1− 1

′

2z
,
d

2z

]
×
∫ ∞
−∞

u du

|u|2−1′
z

F

[
α, 1− 1

′

2z
, 2α,

2u− 1

u2

]
(5.9)

y = π A2S

zA′�d
B

[
1

2
, 2α − 1

2

]
×
∫ ∞

0
dq qd−2−1

∫ |1+q|2z
|1−q|2z

dx

x
1+3z−2

2z

F

[
α,

1

2
, 2α, 1− q

2z

x

]
(5.10)

whereB[a, b] andF [a, b, c, x] are the Euler beta and hypergeometric functions and where
the last equation (5.10) was written for the special cased = 3 which we shall consider
below. We can solve analytically equations (5.7)–(5.9) at orderε2 to compare with the
exact RG treatment of [10]. At lowest order we obtain:

c = 8 ln 2

π

arctan
√

1−y2

y2√
1− y2

− 1 (5.11)

A′ = −πε
4

(5.12)

y = 4 ln 2

π
(5.13)

where we have defined, following [10],

z = 2+ cη. (5.14)

The order O(ε2) RG results reads,c = 6 ln 4
3 − 1 = 0.7261. The form (5.14) means that

to lowest-orderz depends onn only through the static exponentη. On the other hand,
equations (5.13) give

c = 0.8376 (5.15)

in slight disagreement with the exact result. This comes from the fact that while our ansatz
for f̃ϕ is exact in the limitε → 0, the corresponding ansatz for̃fσ is already wrong at
lowest order since it does not satisfy equation (4.6). In our second ansatz, we thus keep the
same shape for̃fϕ, but choose, forf̃σ , a form which is exact whenε → 0.
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6. Ansatz 2

Knowing the mean-field form forfϕ(x) we can, at lowest order inε, write for Im[fσ (x)]

Im fσ (x) = 2d−4f (η, d)

πd/2

(2π)d

0
[
2− d

2

] Im

[
1

ξ(x)

]
(6.1)

where

ξ(x) = 1− ε
2

∫ 1

0
dt log[1− t2− 2ix(1− t)]. (6.2)

It is then straightforward to generalize Im[fσ (x)] to general dimensions as:

f̃σ ∝ Im[(2− ix)1−
1′
z − (1− ix)1−

1′
x ] (6.3)

with a prefactor ensuring that the coefficient ofx−
1′
z for largex is unity. Equation (5.8) is

now replaced by

sin2

(
π1

2z

)
= A2A′Sb

nz

∫ ∞
0

dr

r
1
z

×
∫ ∞
−∞

du
Im

[(
2− i π

2 ln 2(yru)
)1−1′

z − (1− i π
2 ln 2(yru)

)1−1′
z

]
u[1+ r2(1− u)2]α

(6.4)

where nowb is given by:

b = 2 ln 2

π
(
2−

1′
z − 1

) (
1′
z
− 1

) . (6.5)

We finally obtain a set of equations forz of the same kind as (5.8)–(5.10) but which
are now exact up to O(ε2), as we have checked directly.

7. Numerical results

We solved numerically both sets of equations ind = 3 for n = 1, . . . ,10. We used the
values ofη(d = 3, n) that can be derived from the formula reported in [5]. The values
obtained forz are reported in table 1.

As it was hoped, the results are fairly independent from the ansatz used, which is more
and more true for largen. The result forn = 1 is rather close to the best Monte Carlo

Table 1.

n z (ansatz 1) z (ansatz 2)

1 2.119 2.113
2 2.071 2.069
3 2.050 2.049
4 2.038 2.038
5 2.031 2.031
6 2.0258 2.0258
7 2.0223 2.0222
8 2.0196 2.0195
9 2.0174 2.0174

10 2.0157 2.0157
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Figure 4. The two ansatz for the functionsfσ (x), n = 1.

estimate of [12], which givesz = 2.09± 0.02. Let us note, however, that the SCSA
overestimates significantlyη in d = 3.

In figure 4 we compare the two different choices for the scaling functionfσ (x) with
their relative values of the parametersy, A′ andz, and in the casen = 1, d = 3. We notice
that the constraints for smallx and largex very much restrict the freedom on the shape of
this function.

Finally, a linear regression of our results forn = 1–10 givesz ' 2+ cη with c = 0.64,
which is lower than the O(ε2) result, but larger than the exact result for d= 3, n→∞, i.e.
c = 1

2 [10].

8. Conclusions

The aim of this paper was to extend the static SCSA to dynamics, in particular the properties
of the critical dynamics of theφ4 model. Although the resulting equations cannot be
fully solved, a much-constrained ansatz leads to a value of the exponentz in rather good
agreement with Monte Carlo data.

Our work was originally inspired by glassy dynamics: the SCSA equations actually
describe in exactly the dynamics of some mean-field spin-glass-like models. It would be
interesting to study these equations in the low-temperature phase, where dynamics becomes
non-stationary (aging) and FDT is lost. Forφ4 models, this corresponds to a coarsening
regime [1]. It would be interesting to know whether the SCSA equations properly describe
this regime, and can compete with other approximation schemes [1, 13].
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